

Water Quality, Growing Media, and Fertilizer – Navigating the Greenhouse Bermuda Triangle

David Baumbauer Plant Growth Center Montana State University Bozeman, MT 59717

406-994-2231 baumbauer@montana.edu

MONTANA AGRICULTURAL EXPERIMENT STATION The Dynamic Relationship between Growing media, Water Quality and Fertility Sources

- Irrigation Water Quality Soluble Salts, pH, and alkalinity.
- Growing Media Physical and chemical properties
- Fertility sources Nitrogen sources and impact on growing media pH.

Water Quality - Soluble Salts

- Measured by Electrical Conductivity (EC)
- Seedlings less than 0.75 dS/m
- General crops less than 1.50 dS/m
- Relationship between EC and TDS
 EC (dS/m) X 640 = TDS (mg/L)

Water pH is known to impact:

- Availability of nutrients in the growing media
- Solubility of fertilizers in solutions
- Stability and efficiency of pesticides and growth regulators

Alkalinity

- The primary impact of water on growing media pH stems from irrigation water alkalinity level.
- Alkalinity is a measure of the facility of water to raise pH.
- Reported as milliequivalents/liter (me/l) or ppm of equivalent calcium carbonate.
- 1 me/l = 50 ppm

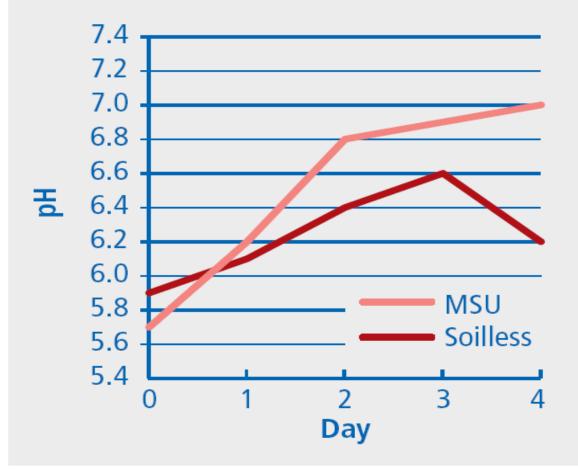
Alkalinity

- Water alkalinity causes substrate pH to rise gradually over time.
 - Length of crop period
 - Plant-to-substrate ratio
 - Upper substrate pH level tolerated by the crop

Water quality guidelines and PGC water test results

The following lists the desirable qualities of irrigation water, as well as the results of a recent Plant Growth Center (PGC) irrigation water test. (mMhos/cm = milliMho per centimeter; meq/L = milliequivalents per liter)

	Acceptable limit	PGC
Characteristic	without treatment required	test results
Electrical conductivity (mMhos/cm)	0.75 for propagation	0.20
	2.0 for general production	
рН	5.4 to 6.8	8.3
Alkalinity (meq/L)	1.5*	1.9

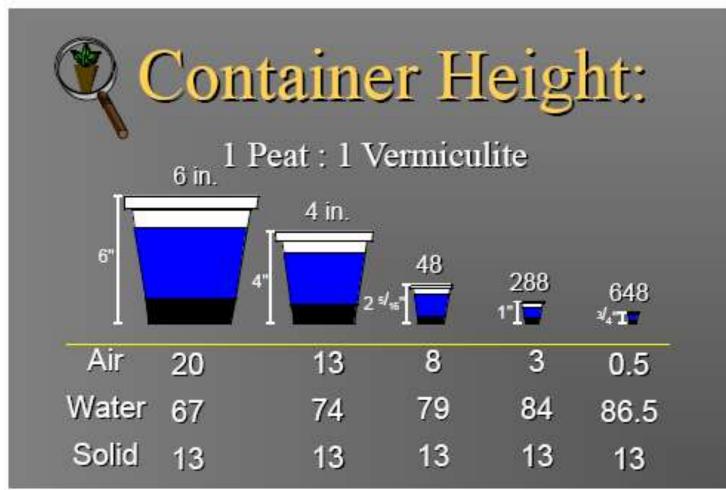

*Alkalinity levels from 3 to 8 meq/L may require acid injection to counteract the impact on growing media pH.

Alkalinity Treatments Water Alkalinity Treatment < 1.5 me (75 ppm) No treatment Acid forming fertilizer < 3.0 me (150 ppm) and/or less lime in media <8.0 me (400 ppm) Acid injection >8.0 me (400 ppm)

Reverse osmosis

Media pH in two mixes

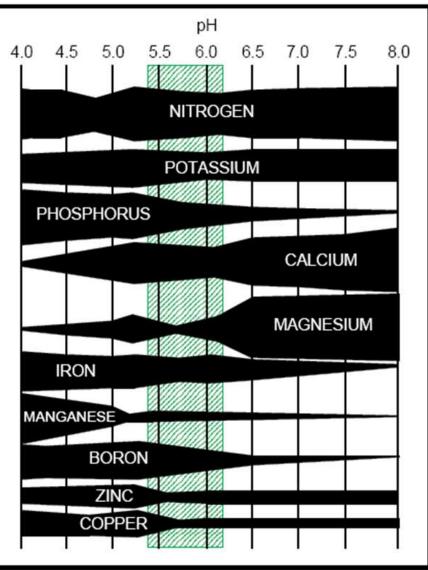
Media pH of commercially prepared soilless mix and Montana State University (MSU) prepared mix with daily application of irrigation water


Functions of Growing Media

- Hold water
- Hold nutrients
- Permit gas exchange to and from roots

Provide support

Air : water ratio dependent on container height



% of container volume at container capacity Source: NCSU Greenhouse Substrates and Fertilization

Chemical Properties of Growing Media

∎ pH

- controls the availability of all essential plant nutrients
- pH range 5.4 6.0 for soil less media
- pH range 6.2 6.8 for soil based media
 (20% mineral
 soil by volume)

Potting Mix Components

Components that hold nutrients and water:

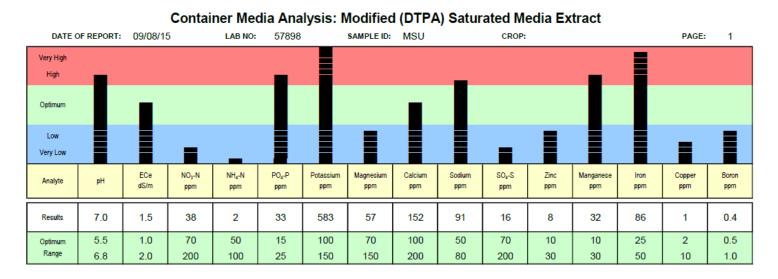
Peat Moss Top Soil Composted Bark Coir (Coco Fiber) Vermicompost

Potting Mix Components

Components that add porosity:

Perlite Sand Vermiculite

MSU Soil Mix vs. Sunshine Mix #1


MSU Soil Mix

I part Peat Moss:1 part Sand:1 part Topsoil. Aqua-Gro 2000G wetting agent.

Sunshine Mix #1

3 parts Peat Moss: 1 part Perlite. Wetting agent, dolomitic limestone, Si and starter fertilizer charge

MSU Mix and Sunshine #1Mix Test Results

Container Media Analysis: Modified (DTPA) Saturated Media Extract

DATE C	OF REPORT:	08/28/15	5	LAB NO:	56960		SAMPLE ID:	SS#1		CROP:				PAGE:	1
Very High High															
Optimum															
Low Very Low				_							_				
Analyte	pН	ECe dS/m	NO ₃ -N ppm	NH₄-N ppm	PO₄-P ppm	Potassium ppm	Magnesium ppm	Calcium ppm	Sodium ppm	SO₄-S ppm	Zinc ppm	Manganese ppm	iron ppm	Copper ppm	Boron ppm
Results	6.5	1.5	30	3	25	69	48	366	15	124	1	8	23	1	0.1
Optimum Range	5.5 6.8	1.0 2.0	70 200	50 100	15 25	100 150	70 150	100 200	50 80	70 200	10 30	10 30	25 50	2 10	0.5 1.0

Selection of Fertilizer

- Proportion of potash (1N:1K₂O)
- Proportion of phosphate (1N: $\frac{1}{2}P_2O_5$)
- Form of nitrogen
 - □ Ammonium (NH₄+)
 - 🗆 Urea
 - \Box Nitrate (NO₃⁻)

Nitrate nitrogen will tend to have a basic reaction, raising media pH. Ammonium sources of nitrogen will have an acid reaction, lowering media pH.

N Fertilizer - pH Relationship

Fertilizer	$\% \text{ NH}_4^+$	Potential Acidity
20-20-20	69	474 lbs.
20-10-20	38	393 lbs.
15-16-17	30	165 lbs.
		Potential Basicity
15.5-0-0	6	400 lbs.
13-0-44	0	460 lbs.

Paul V. Nelson's Greenhouse Operation and Management

SUNSHINE **`HNIGR 20-10-20** NO BORON For Continuous Liquid Feed Programs - For Professional Use Only

GUARANTEED ANALYSIS - USA

Total Nitrogen (N). 8.0 % Ammoniacal Nitrogen 12.0% Nitrate Nitrogen	20 %
Available Phosphate (P_2O_5)	10%
Soluble Potash (K ₂ O).	20%
Magnesium (Mg).	0.40%
0.40% Water Soluble Magnesium (Mg)	
Sulfur (S)	0.50%
0.50% Combined Sulfur	
Copper (Cu)	0.05%
0.05% Chelated Copper (Cu)	
0.10% Chelated Iron (Fe)	
Manganese (Mn)	0.05%
0.05% Chelated Manganese (Mn)	
Molybdenum (Mo)	0.01%
Zinc (Zn)	0.05%
0.05% Chelated Zinc (Zn)	
DEDIVED EDOM: Asymptotic Description Mitrate Asymptotic Magnesium Sulfate Iron EDTA Conner EDTA. Zine EDTA	

DERIVED FROM: Ammonium Phosphate, Potassium Nitrate, Ammonium Nitrate, Magnesium Sulfate, Iron EDTA, Copper EDTA, Zinc EDTA, Manganese EDTA, Boric Acid, Sodium Molybdate.

0.03 czigal (0.25 g/l)

0.5 cz/gal (3.8 gil)

1.7 oz/gai (12.5 g/l)

3.4 ozigal (25 gl)

4.3 ozigal (32 gl)

6.7 ozigal (50 g/l)

No Dilution

1:15 (Hozon)

1:50

1:100

1:128

1:200

WARNING: This fertilizer contains Molybdenum. Its use on forage crops POTENTIAL ACIDITY: 400 lb Calcium Carbonate Equivalent per ton. may result in crops containing levels of molybdenum which are toxic to ruminants.

0.13 celgal (1 gT)

2 oz/gai (15 g/l)

Information regarding the contents and levels of metals in this product is available on the Internet at: http://www.aapfco.org/metals.htm

NET WEIGHT: 25 lb / 11.3 kg Mixing Concentrated Fertilizer Solutions: The table below lists how much Technigro fertilizer by weight to blend into a given volume of water to make a concentrated fertilizer solution. Recommended fertilizer concentrations are for a continuous feed program. However, the Technigro formula (NPK) and concentration (ppm) most suitable for individual use should be determined by soil and water analysis as well as plant response. Various target concentration and common injector ratios are included. Technigro dissolves faster in hot water. When mixing a concentrated solution with cold water, stir well

and allow ample time for fertilizer to dissolve before using.

DIREC	TIONS F	OR USII	NG 20-1	0-20 NO	BORON
Solutions:				entrate solution	A soluble salts
er by weight to	Injector Ratio	80 ppm Nitregen	100 ppm Nitregen	200 ppm Nitrogen	in mmbos/ cm

0.07 ozigal (0.5 gil)

1 ozigal (7.5 g/l)

3.4 ozigal (25 gil)

6.7 ozigal (50 g/l)

8.5 czigal (64 gil)

13.4 ozigal (100 g/l) 26.7 ozigal (200 g

A soluble salts or conductivity meter can be used to estimate the concentration of fertilizer solutions. The correct conductivity (EC) in mmhos/ cm is listed below for various nom Nitrogen concentrations. When measuring the conductivity of fertilizer solutions, be sure to subtract the conductivity of the water from the measured value of the fertilizer solution.

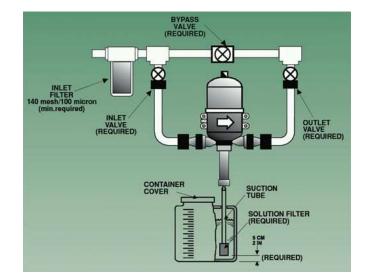
6.7 czigal (50 g/l)					
13.4 czigal (100 g/l)					300 ppm Nitrogen
17 oz/gai (128 gil)	nurøgen	Nitrogen	Nitrogen	nurogen	nitrogen
26.7 ozigal (200 g/l)	0,33	0,85	0,98	1.30	1,95

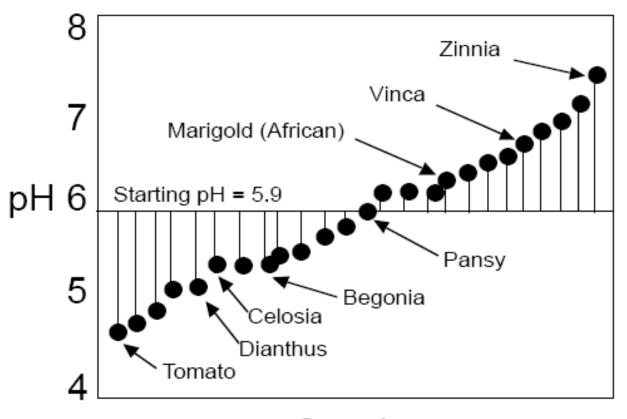
Potential Acidity: 400 lbs. Calcium Carbonate Equivalent per ton

Miracle-Gro – Acid or Base Forming?

Miracle-Gro® Water Soluble All Purpose Plant Food 24-8-16				
GUARANTEED	ANALYSIS F 1198			
Total Nitrogen (N)	Molybdenum (Mo)0.0005%			
3.5% Ammoniacal Nitrogen	Zinc (Zn)0.06%			
20.5% Urea Nitrogen	0.06% Water Soluble Zinc (Zn)			
Available Phosphate (P ₂ O ₅)	Derived from Ammonium Sulfate,			
Soluble Potash (K ₂ O)	Potassium Phosphate, Potassium Chloride,			
Boron (B) 0.02%	Urea, Urea Phosphate, Boric Acid, Copper			
Copper (Cu)	Sulfate, Iron EDTA, Manganese EDTA,			
0.07% Water Soluble Copper (Cu)	Sodium Molybdate, and Zinc Sulfate.			
Iron (Fe) 0.15%	Information regarding the contents and			
0.15% Chelated Iron (Fe)	levels of metals in this product is available			
Manganese (Mn)	on the Internet at			
0.05% Chelated Manganese (Mn)	http://www.regulatory-info-sc.com			

Fertilizer Injection




Fertilizer Injectors

Species

Source: NCSU – Greenhouse Substrates and Fertilization

The "Big Four" Nutritional Problems

Too High pH

- Caused by highly alkaline water, excess lime, calcium nitrate fertilizers.
- □ P, Fe, Mn, Zn, Cu, and B tied up.

Too Low pH

- \Box Caused by acid forming fertilizers (NH₄⁺)
- Ca, Mg, S, Mo tied up. Excessively soluble Fe, Mn, and AI react with P to render it insoluble.

The "Big Four" continued

Excess Soluble Salts

Caused by a combination of high salinity water and excess fertilization

Low Soluble Salts

Caused by excessive leaching, infrequent fertilization and/or malfunctioning fertilizer injector

What happens when you confuse 17-17-17 Lawn and Garden fertilizer with 17-17-17 "time release" fertilizer.

The Pour Through Test

Figure 2a. Irrigate containers thoroughly.

Figure 2e. Collected leachate for tecting

Figure 2f. Collect 50 ml (1.5 ounces) for testing.

350

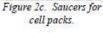
50

*Containers should be brought to container capacity 20 to 60 minutes before applying these amounts. "These amounts are estimates. Actual amounts will yary pending on crop, substrate type, and environmental conditi

12.0

2.0

Figure 2b. Saucer for pots.



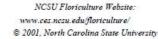

Figure 2d. Applying water for extraction.

Figure 2g. Calibration standards for testing.

Figure 2h. Testing leachate samples.

iesung.		ounces/ joi resung.				
	Table 1. Amount o containers to obtain	f water to apply 50 ml (1.5 ounc	to various es) of extract*.			
	Container Size	Water to add**				
		milliliters	ounces			
T Branch	4 inch 5 inch 6 inch	75	2.5			
	6.5 inch azalea	100	3.5			
	l quart	75	2.5			
	4 quart	150	5.0			
	12 munt	250	12.0			

12 quart Flats 606 (36 plants) 1203 (36 plants) 1204 (48 plants)

EC interpretation values for Pour Through

Pour Through (mS/cm)	Indication
0 to 1.0	Very Low
1.0 to 2.6	Low
2.6 to 4.6	Normal
6.6 to 7.8	Very High
> 7.8	Extreme
Adapted from BC Ministry of Agriculture	

All this and more may be found on the PGC website:

ag.montana.edu/plantgrowth